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SUMMARY

When a transient event, such as mass loss, occurs in a rotor/magnetic bearing system, optimal
vibration control forces may exceed bearing capabilities. This will be inevitable when the mass loss is
sufficiently large and a conditionally unstable dynamic system could result if the bearing characteristics
become non-linear. This paper provides a controller design procedure to suppress, where possible,
bearing force demands below saturation levels whilst maintaining vibration control. It utilizes H,,
optimisation with appropriate input and output weightings. Simulation of transicnt behaviour following
mass loss from a flexible rotor is used to demonstrate the avoidance of conditional instability. A

compromise between transient control force and vibration levels was achieved.

INTRODUCTION

Magnetic bearings are being used in increasing numbers in rotating machinery applications, both
for the support of static loads and for the control of rotor vibration. However, the advantages of
negligible frictional heating and wear are offset against the disadvantage of reduced load carrying
capacity when compared with conventional bearings. Also, most applications arc limited to relatively
small rotors that are rigid in the sense that the rotational speed remains below the first rotor bending

mode frequency.

Maximum force characteristics of a magnetic bearing are constrained by material saturation limits.

* Work done under EPSRC Grant GR/J15575
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When such a bearing forms a component in an active rotor dynamic system, the associated controller is
invariably designed on the assumption that the system behaves in a lincar manner. Also, most
industrial implementations configure magnetic bearings to act as decentralised springs and viscous
dampers. Nonetheless, significant rescarch progress has been made towards improved controller
designs. An open loop technique for the control of stcady synchronous vibration is now well
established (ref. 1). The feedforward concept has been developed further (refs 2, 3) and applied to a
turbo expander. Interest in the dynamic behaviour of synchronous vibration amplitudes has led to the
control of transient rotor vibration through relatively slow acting closed loop controllers that utilise
open loop influence cocfficients (refs 4-8). Recent research published in the open litcrature has been
dirccted towards the development of higher order centralised state space controllers (refs 9, 10).
However, the non-linear influences of bcaring saturation on controllcr design have received only

limited attention.

During a rotor mass loss event, the following situations may arise during the transient rotor

vibration response:

(a) The rotor dynamic system remains linear, without magnetic bearing saturation.
(b) The rotor dynamic system becomes non-linear, without magnetic bearing saturation.
(c) The magnetic bearing saturates with no possibility of the system returning to a lincar steady state.

(d) The magnetic bearing saturatcs, though the system may have a linearly stable steady state.

For example, in case (c), the mass loss may bc so large that the magnetic bearing cannot deliver
sufficient control force and contact is made with emergency bearings. In cases (b) and (d), the
controller design is important. A deficient controller for case (d) could result in a long period of
saturation or even an unacceptable limit cycle response. Alternatively, a well designed controller would
limit the transient saturation period. The proposition of the prescnt paper is that the saturation time

may be eliminated so that the controller ensures that case (d) is avoided completcly.
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NOMENCLATURE

A system matrix

B,, B, disturbance force, control force distribution matrices

o derivative feedback gain

C..C,.,C,GC, coefficient matrices

e e control variable vectors

E  E, disturbance force, control force distribution matrices

A0, F(s) vector of rotor external disturbance forces (time, Laplace domain)
H(s) vibration controller transfer function matrix

vector of magnetic bearing control currents

c

J rotor gyroscopic matrix

k, proportional feedback gain

K rotor stiffness matrix

k., k, magnetic bearing current, displacement coefficients
m',m mass-cccentricity vectors

M rotor mass matrix

n(t), N(s) vector of measurement errors (time, Laplace domain)
q vector of rotor lateral displacements and angular deflections
s Laplace transform variable

t time

Ty Tups Tons T closed loop transfer function matrices

u(r), U(s) control force vector (time, Laplace domain)

w,, W, W,, W, weighting function matrices

x state vector (x = [¢", §']")

(), X(s) vector of rotor displacements at transducer locations (time, Laplace domain)

z(?), Z(s) vector of rotor lateral displacements at magnetic bearings (time, Laplace domain)
1 time constant

® frequency

Q rotational speed

21



SYSTEM DYNAMIC BEHAVIOUR

A project is being undertaken at the University of Bath to investigate vibration controller designs
for flexible rotor systems. A rig has been constructed and the schematic form is shown in figure 1. It
consists of a flexible rotor mounted on two magnetic bearings. The rotor was designed to have a mass
of 100 kg with first and second rotor bending modes at around 26 Hz and 66 Hz respectively. A finite

element rotor model leads to a discretized linear rotor dynamic system cquation having the form

M§+QJg +Kg=Ef+Eu (1)

Each magnetic bearing consists of two opposing pole pairs arranged at 45° to the vertical. The coils are
powered by current amplificrs and, assuming a linear relation, the bearing control forces on the rotor

are given by

u=ki +kz 2)

where

1=C g¢q 3)

It follows that the system behaviour is governed by

M§ + QI + (K-EkC,)q = Ef + E ki 4

u'z zq

For control design purposes, equation (4) is converted to the first order state space form

.x':=Ax+B/f+Buu
&)
y=Cx , z=Cx , e=C,x

¥y

Here, y is a vector of lateral displacements of the rotor at the outer disks and magnetic bearings,
corresponding to displacement transducer locations. The magnetic bearing force components u are to
be used for levitation and vibration control. In order that the vibration control performance can be
defined, the vector e is chosen to consist of variables that are to be minimised. In the Laplace

transform domain the magnetic bearing forces are written as
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Us) = HS)W(s) - (-k, +k +sc,/(1+15))Z(s) (6)

where the levitation components consist of a practical implementation of proportional and derivative

control.

A block diagram of the rotor/magnetic bearing system is shown in figure 2, which includes
measurement noise and a reference position vector for the rotor at the bearings. Bearing saturation is
also incorporated in figure 2 with the simple limiter on a. It is now evident that, although the lincar
system may be stable, the non-lincar system may only be conditionally stable. For example, mass loss

from the rotor can be represented by a step change in the unbalance condition by

fo) = { 0 , t£0 (7)

Qlme™ + Q2me™ | (>0

If the level of mass loss, represented by a norm of m’, is sufficiently small, the saturation limits will
not be reached. Otherwise, an amplitude dependcnt response is likely and it is in this casc that the

vibration controller H(s) can be used to influence the region of linear behaviour.

The system dynamic characteristics without vibration control (H(s) = 0) are cvident from the
steady synchronous unbalance responses of figure 3. The system unbalance corresponded to a nominal
10 g mass on the outer rim of the non-driven end disk with low/high values of the derivative gain. In
figure 3(a), rigid body modes are apparent at around 45 rad/s. First order rotor flexure (164 rad/s) has
a sharp response since the bearings are close to vibration nodes. The other critical speed involves
second order rotor flexure around 420 rad/s and the broader peak indicates greater modal damping and
controllability. In figure 3(b), modes involving rigid body rotor motion are well damped and do not
exhibit any peaks in the response curves. The increased derivative gain has little effect on the first
rotor flexural frequency, in contrast to the significant reduction of the second rotor flexural critical

speed.

Mass loss simulations at a speed Q = 500 rad/s are shown in figure 4, starting from a perfect

balance condition and with a mass of 60 g removed from the non-driven end disk at time t = 0.
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Bearing saturation and clearance limits were not sct so that the system remained lincar. For low
damping, the rotor displacement response at the non-driven end bearing exhibits transicnt responscs of
the critical speced modes. The rigid body responsc is significant and in any practical system the rotor
would collide with emergency rctainer bearings for displacements amplitudes above around 1mm. The
high damping casc of figure 4(b) reduccs the rotor overshoot, though at the expensc of substantially
increased control forces. With the inclusion of control force limits of (-1700, 1000) N, biased by static
loading, saturation is bound to occur in the high damping case. The simulated results are shown in
figure 5, though still without clearance limits. The rotor responses at the bearings suffer from drift
when compared with figurc 4(b). Of course, in a practical system, the rotor would collide with an
emergency bcaring at the driven cnd magnetic bearing. Clearly, transient vibration control is not

effective due to the passive configuration of the magnetic bearings.

VIBRATION CONTROLLER DESIGN

To define the level of vibration control, the variables in e were chosen to consist of lateral rotor
velocities at the end disks and magnetic bearing locations, coincident with the measurement locations.
Without stating the precise details, it is clear from figure 2 that a closced loop transfer function relation

exists to relate the external disturbances to the control variables:

W (s)" F(s)
W (s)" N(s)

EGs) = [T (H;)W (), T, (H;5) W (5)] ®)

The weighting W,(s) was sclected as a diagonal matrix with a frequency response characteristic that
recognises the nature of mass loss unbalance forcing. Singular value bode plots are shown in figure 6.
The weighting W,(s) reflects the level of anticipated measurement noise and was chosen to have a flat
spectrum of small amplitude. A basis on which to evaluate the controller is through the H,,

optimisation problem

minimise

g T Hs)WLs), T, (H;) W ()]l ®)

.

However, this optimisation provides no means of accounting for the bearing saturation limits since it
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assumes that unconstrained levels of control force are available.

To overcome the saturation problem, the control force vector # is now included in the control

variables:

(10)

A revised version of the closed loop system given by equation (8) is

US| (WOTH )WL) W)T, (Hi)W,(5)

W()EE)| |WET(H;s)WL(s) WT, (H;)W(5)
W ()" N(s)

W (s) F(s)} an

with the H_ optimisation

minimise

e (12)

We)T, f(H YW f(s) W()T, (H;s)W (5)
W (s) Tuf(H ;5) Wf(s) W T, (H.s)W,(5)

in

L

Here the weightings W (s) and W,(s) are introduced to allow design influences on control performance

and control force respectively.

For the present problem, the rotor was modelled using 12 beam elements, including shear
deformation. The levitation parameters were set at k, = 1.05 &, , ¢, = 7.5%10° Ns/m and T = 10 s to
produce well damped low frequency rigid body modes without undue influence on the rotor flexural
modes. The following weighting forms were arrived at after an iterative process to achicve required

levels of vibration attenuation and control force output:

W) =101, W) =1, W) =107 (13)

In practice, some shaping would also be applied to these weightings in order that problems such as
spillover may be avoided. A controller H(s) may be determined in state space form using standard

algorithms. For numerical efficiency, dominant mode techniques were employed to reduce the full
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order 104 states rotor model to a 24th order state space model.

The significance of the revised vibration controller is shown in the simulated mass loss plots of
figure 7. The rotational speed and mass loss correspond with those of figures 4 and 5. It is seen that
synchronous steady state vibration levels are reduced below those of the high damping case in figure
4(b), yet magnetic bearing forces are now within saturation limits. There is an initial transient response
involving mainly rigid body motion, though the vibration amplitudes would be well within clearance
limits. Any attempt to reduce this transient would require increased transient control force levels. Thus
a compromise between magnetic bearing saturation and clearance constraints is always necessary.
There is scope for further design to influence steady state force components with alternative weighting
functions, but the consideration of this paper has been focused on the transient behaviour. Some
generalisation for mass losses at different locations and over a range of rotational speeds is also

possible.

CONCLUSIONS

This paper has been used to show that there are circumstances in which vibration control may be
achieved without magnetic bearing saturation in a rotor dynamic system. One of the consequences of
this is that conditional system instability, caused by non-linear bearing behaviour, may be overcome.
However, the ultimate level of achievable vibration control will still depend on the saturation limits
and large unbalance conditions will result in significant residual vibration amplitudes. In particular, if
the magnetic bearings are situated close to vibration nodes, low controllability will prevent significant

reduction around certain critical speeds.

The control design included H, optimisation to minimise both vibration responses and control
force levels. Mass loss simulations were used to demonstrate the avoidance of saturation during
transient conditions. The success of the method depends on a judicious choice of weighting functions
appropriate to the anticipated levels of mass loss that are likely to occur. The weighting functions must
be normalised to enable the optimisation problem to achieve desired performance levels. If the mass

loss is greater than the levels accounted for in the design, bearing saturation may still occur.
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Figure 1. Schematic diagram of rotor / magnetic bearing system.
The steel rotor is 2m long with a shaft diamcter of 50mm.
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Disturbance f

e | -
Saturation
Rotor
u _/— X o
z .
Levitation !
sc z
k + L4 ref
Q Pl +1s) D €
Mcasurcment
cItor
i i Jy n
Vibration

Controller Hs)

Figure 2. Block diagram of system including Icvitation and vibration control.
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Figure 4. Mass loss simulations at a speed © = 500 rad/s with a 60 g mass removed
from the non-driven end disk rim in the z direction (45° to vertical against rotation)

at t = 0 (k, = 1-05k,, k, = 2:05 x 10° N/m, 7

1073 s). Vibration components of

rotor amplitude and bearing force are shown at the non-driven end magnetic bearing.
Saturation and clearance limits were not set. The vibration controller of figure 2 is not

present.
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Figure 5. Mass loss simulations at a speed £ = 500 rad/s with a 60 g mass removed from
the non-driven end disk rim in the z direction at t = 0 (k, = 1.05k,, ¢4 = 5 x 10? Ns/m,
k. = 2:05 x 10° N/m, 7 = 1073 s). Vibration components of rotor amplitude and
bearing force are shown at the magnetic bearings. Saturation force limits were set af,
1000 and -1700 N. The vibration controller of figure 2 is not present.
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Figure 7. Mass loss simulations at a speed 2 = 500 rad/s with a 60 g mass removed from
the non-driven end disk rim in the z direction at t = 0 (k, = 1-05k,, ¢4 = 7-5x 10% Ns/m,
k. = 2:05x10° N/m, 7 = 1073 5). Vibration components of rotor amplitude and hearing
control force are shown at the magnetic bearings. Saturation force limits were set at

1000 and -1700 N. The vibration controller of figure 2 is present.
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